3.300 \(\int \frac{\sin ^{-1}(a x)^3}{(c-a^2 c x^2)^{5/2}} \, dx\)

Optimal. Leaf size=388 \[ -\frac{2 i \sqrt{1-a^2 x^2} \sin ^{-1}(a x) \text{PolyLog}\left (2,-e^{2 i \sin ^{-1}(a x)}\right )}{a c^2 \sqrt{c-a^2 c x^2}}+\frac{\sqrt{1-a^2 x^2} \text{PolyLog}\left (3,-e^{2 i \sin ^{-1}(a x)}\right )}{a c^2 \sqrt{c-a^2 c x^2}}+\frac{\sqrt{1-a^2 x^2} \log \left (1-a^2 x^2\right )}{2 a c^2 \sqrt{c-a^2 c x^2}}+\frac{2 x \sin ^{-1}(a x)^3}{3 c^2 \sqrt{c-a^2 c x^2}}-\frac{2 i \sqrt{1-a^2 x^2} \sin ^{-1}(a x)^3}{3 a c^2 \sqrt{c-a^2 c x^2}}-\frac{\sin ^{-1}(a x)^2}{2 a c^2 \sqrt{1-a^2 x^2} \sqrt{c-a^2 c x^2}}+\frac{x \sin ^{-1}(a x)}{c^2 \sqrt{c-a^2 c x^2}}+\frac{2 \sqrt{1-a^2 x^2} \sin ^{-1}(a x)^2 \log \left (1+e^{2 i \sin ^{-1}(a x)}\right )}{a c^2 \sqrt{c-a^2 c x^2}}+\frac{x \sin ^{-1}(a x)^3}{3 c \left (c-a^2 c x^2\right )^{3/2}} \]

[Out]

(x*ArcSin[a*x])/(c^2*Sqrt[c - a^2*c*x^2]) - ArcSin[a*x]^2/(2*a*c^2*Sqrt[1 - a^2*x^2]*Sqrt[c - a^2*c*x^2]) + (x
*ArcSin[a*x]^3)/(3*c*(c - a^2*c*x^2)^(3/2)) + (2*x*ArcSin[a*x]^3)/(3*c^2*Sqrt[c - a^2*c*x^2]) - (((2*I)/3)*Sqr
t[1 - a^2*x^2]*ArcSin[a*x]^3)/(a*c^2*Sqrt[c - a^2*c*x^2]) + (2*Sqrt[1 - a^2*x^2]*ArcSin[a*x]^2*Log[1 + E^((2*I
)*ArcSin[a*x])])/(a*c^2*Sqrt[c - a^2*c*x^2]) + (Sqrt[1 - a^2*x^2]*Log[1 - a^2*x^2])/(2*a*c^2*Sqrt[c - a^2*c*x^
2]) - ((2*I)*Sqrt[1 - a^2*x^2]*ArcSin[a*x]*PolyLog[2, -E^((2*I)*ArcSin[a*x])])/(a*c^2*Sqrt[c - a^2*c*x^2]) + (
Sqrt[1 - a^2*x^2]*PolyLog[3, -E^((2*I)*ArcSin[a*x])])/(a*c^2*Sqrt[c - a^2*c*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.305563, antiderivative size = 388, normalized size of antiderivative = 1., number of steps used = 11, number of rules used = 11, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.5, Rules used = {4655, 4653, 4675, 3719, 2190, 2531, 2282, 6589, 4677, 4651, 260} \[ -\frac{2 i \sqrt{1-a^2 x^2} \sin ^{-1}(a x) \text{PolyLog}\left (2,-e^{2 i \sin ^{-1}(a x)}\right )}{a c^2 \sqrt{c-a^2 c x^2}}+\frac{\sqrt{1-a^2 x^2} \text{PolyLog}\left (3,-e^{2 i \sin ^{-1}(a x)}\right )}{a c^2 \sqrt{c-a^2 c x^2}}+\frac{\sqrt{1-a^2 x^2} \log \left (1-a^2 x^2\right )}{2 a c^2 \sqrt{c-a^2 c x^2}}+\frac{2 x \sin ^{-1}(a x)^3}{3 c^2 \sqrt{c-a^2 c x^2}}-\frac{2 i \sqrt{1-a^2 x^2} \sin ^{-1}(a x)^3}{3 a c^2 \sqrt{c-a^2 c x^2}}-\frac{\sin ^{-1}(a x)^2}{2 a c^2 \sqrt{1-a^2 x^2} \sqrt{c-a^2 c x^2}}+\frac{x \sin ^{-1}(a x)}{c^2 \sqrt{c-a^2 c x^2}}+\frac{2 \sqrt{1-a^2 x^2} \sin ^{-1}(a x)^2 \log \left (1+e^{2 i \sin ^{-1}(a x)}\right )}{a c^2 \sqrt{c-a^2 c x^2}}+\frac{x \sin ^{-1}(a x)^3}{3 c \left (c-a^2 c x^2\right )^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[ArcSin[a*x]^3/(c - a^2*c*x^2)^(5/2),x]

[Out]

(x*ArcSin[a*x])/(c^2*Sqrt[c - a^2*c*x^2]) - ArcSin[a*x]^2/(2*a*c^2*Sqrt[1 - a^2*x^2]*Sqrt[c - a^2*c*x^2]) + (x
*ArcSin[a*x]^3)/(3*c*(c - a^2*c*x^2)^(3/2)) + (2*x*ArcSin[a*x]^3)/(3*c^2*Sqrt[c - a^2*c*x^2]) - (((2*I)/3)*Sqr
t[1 - a^2*x^2]*ArcSin[a*x]^3)/(a*c^2*Sqrt[c - a^2*c*x^2]) + (2*Sqrt[1 - a^2*x^2]*ArcSin[a*x]^2*Log[1 + E^((2*I
)*ArcSin[a*x])])/(a*c^2*Sqrt[c - a^2*c*x^2]) + (Sqrt[1 - a^2*x^2]*Log[1 - a^2*x^2])/(2*a*c^2*Sqrt[c - a^2*c*x^
2]) - ((2*I)*Sqrt[1 - a^2*x^2]*ArcSin[a*x]*PolyLog[2, -E^((2*I)*ArcSin[a*x])])/(a*c^2*Sqrt[c - a^2*c*x^2]) + (
Sqrt[1 - a^2*x^2]*PolyLog[3, -E^((2*I)*ArcSin[a*x])])/(a*c^2*Sqrt[c - a^2*c*x^2])

Rule 4655

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> -Simp[(x*(d + e*x^2)^(p
+ 1)*(a + b*ArcSin[c*x])^n)/(2*d*(p + 1)), x] + (Dist[(2*p + 3)/(2*d*(p + 1)), Int[(d + e*x^2)^(p + 1)*(a + b*
ArcSin[c*x])^n, x], x] + Dist[(b*c*n*d^IntPart[p]*(d + e*x^2)^FracPart[p])/(2*(p + 1)*(1 - c^2*x^2)^FracPart[p
]), Int[x*(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcSin[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2
*d + e, 0] && GtQ[n, 0] && LtQ[p, -1] && NeQ[p, -3/2]

Rule 4653

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)/((d_) + (e_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(x*(a + b*ArcSin[c
*x])^n)/(d*Sqrt[d + e*x^2]), x] - Dist[(b*c*n*Sqrt[1 - c^2*x^2])/(d*Sqrt[d + e*x^2]), Int[(x*(a + b*ArcSin[c*x
])^(n - 1))/(1 - c^2*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0]

Rule 4675

Int[(((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*(x_))/((d_) + (e_.)*(x_)^2), x_Symbol] :> -Dist[e^(-1), Subst[In
t[(a + b*x)^n*Tan[x], x], x, ArcSin[c*x]], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[n, 0]

Rule 3719

Int[((c_.) + (d_.)*(x_))^(m_.)*tan[(e_.) + (f_.)*(x_)], x_Symbol] :> Simp[(I*(c + d*x)^(m + 1))/(d*(m + 1)), x
] - Dist[2*I, Int[((c + d*x)^m*E^(2*I*(e + f*x)))/(1 + E^(2*I*(e + f*x))), x], x] /; FreeQ[{c, d, e, f}, x] &&
 IGtQ[m, 0]

Rule 2190

Int[(((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.))/((a_) + (b_.)*((F_)^((g_.)*((e_.) +
 (f_.)*(x_))))^(n_.)), x_Symbol] :> Simp[((c + d*x)^m*Log[1 + (b*(F^(g*(e + f*x)))^n)/a])/(b*f*g*n*Log[F]), x]
 - Dist[(d*m)/(b*f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*Log[1 + (b*(F^(g*(e + f*x)))^n)/a], x], x] /; FreeQ[{F,
a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]

Rule 2531

Int[Log[1 + (e_.)*((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.)]*((f_.) + (g_.)*(x_))^(m_.), x_Symbol] :> -Simp[((
f + g*x)^m*PolyLog[2, -(e*(F^(c*(a + b*x)))^n)])/(b*c*n*Log[F]), x] + Dist[(g*m)/(b*c*n*Log[F]), Int[(f + g*x)
^(m - 1)*PolyLog[2, -(e*(F^(c*(a + b*x)))^n)], x], x] /; FreeQ[{F, a, b, c, e, f, g, n}, x] && GtQ[m, 0]

Rule 2282

Int[u_, x_Symbol] :> With[{v = FunctionOfExponential[u, x]}, Dist[v/D[v, x], Subst[Int[FunctionOfExponentialFu
nction[u, x]/x, x], x, v], x]] /; FunctionOfExponentialQ[u, x] &&  !MatchQ[u, (w_)*((a_.)*(v_)^(n_))^(m_) /; F
reeQ[{a, m, n}, x] && IntegerQ[m*n]] &&  !MatchQ[u, E^((c_.)*((a_.) + (b_.)*x))*(F_)[v_] /; FreeQ[{a, b, c}, x
] && InverseFunctionQ[F[x]]]

Rule 6589

Int[PolyLog[n_, (c_.)*((a_.) + (b_.)*(x_))^(p_.)]/((d_.) + (e_.)*(x_)), x_Symbol] :> Simp[PolyLog[n + 1, c*(a
+ b*x)^p]/(e*p), x] /; FreeQ[{a, b, c, d, e, n, p}, x] && EqQ[b*d, a*e]

Rule 4677

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*(x_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[((d + e*x^2)^
(p + 1)*(a + b*ArcSin[c*x])^n)/(2*e*(p + 1)), x] + Dist[(b*n*d^IntPart[p]*(d + e*x^2)^FracPart[p])/(2*c*(p + 1
)*(1 - c^2*x^2)^FracPart[p]), Int[(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcSin[c*x])^(n - 1), x], x] /; FreeQ[{a, b,
c, d, e, p}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && NeQ[p, -1]

Rule 4651

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)/((d_) + (e_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(x*(a + b*ArcSin[c
*x])^n)/(d*Sqrt[d + e*x^2]), x] - Dist[(b*c*n)/Sqrt[d], Int[(x*(a + b*ArcSin[c*x])^(n - 1))/(d + e*x^2), x], x
] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && GtQ[d, 0]

Rule 260

Int[(x_)^(m_.)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Simp[Log[RemoveContent[a + b*x^n, x]]/(b*n), x] /; FreeQ
[{a, b, m, n}, x] && EqQ[m, n - 1]

Rubi steps

\begin{align*} \int \frac{\sin ^{-1}(a x)^3}{\left (c-a^2 c x^2\right )^{5/2}} \, dx &=\frac{x \sin ^{-1}(a x)^3}{3 c \left (c-a^2 c x^2\right )^{3/2}}+\frac{2 \int \frac{\sin ^{-1}(a x)^3}{\left (c-a^2 c x^2\right )^{3/2}} \, dx}{3 c}-\frac{\left (a \sqrt{1-a^2 x^2}\right ) \int \frac{x \sin ^{-1}(a x)^2}{\left (1-a^2 x^2\right )^2} \, dx}{c^2 \sqrt{c-a^2 c x^2}}\\ &=-\frac{\sin ^{-1}(a x)^2}{2 a c^2 \sqrt{1-a^2 x^2} \sqrt{c-a^2 c x^2}}+\frac{x \sin ^{-1}(a x)^3}{3 c \left (c-a^2 c x^2\right )^{3/2}}+\frac{2 x \sin ^{-1}(a x)^3}{3 c^2 \sqrt{c-a^2 c x^2}}+\frac{\sqrt{1-a^2 x^2} \int \frac{\sin ^{-1}(a x)}{\left (1-a^2 x^2\right )^{3/2}} \, dx}{c^2 \sqrt{c-a^2 c x^2}}-\frac{\left (2 a \sqrt{1-a^2 x^2}\right ) \int \frac{x \sin ^{-1}(a x)^2}{1-a^2 x^2} \, dx}{c^2 \sqrt{c-a^2 c x^2}}\\ &=\frac{x \sin ^{-1}(a x)}{c^2 \sqrt{c-a^2 c x^2}}-\frac{\sin ^{-1}(a x)^2}{2 a c^2 \sqrt{1-a^2 x^2} \sqrt{c-a^2 c x^2}}+\frac{x \sin ^{-1}(a x)^3}{3 c \left (c-a^2 c x^2\right )^{3/2}}+\frac{2 x \sin ^{-1}(a x)^3}{3 c^2 \sqrt{c-a^2 c x^2}}-\frac{\left (2 \sqrt{1-a^2 x^2}\right ) \operatorname{Subst}\left (\int x^2 \tan (x) \, dx,x,\sin ^{-1}(a x)\right )}{a c^2 \sqrt{c-a^2 c x^2}}-\frac{\left (a \sqrt{1-a^2 x^2}\right ) \int \frac{x}{1-a^2 x^2} \, dx}{c^2 \sqrt{c-a^2 c x^2}}\\ &=\frac{x \sin ^{-1}(a x)}{c^2 \sqrt{c-a^2 c x^2}}-\frac{\sin ^{-1}(a x)^2}{2 a c^2 \sqrt{1-a^2 x^2} \sqrt{c-a^2 c x^2}}+\frac{x \sin ^{-1}(a x)^3}{3 c \left (c-a^2 c x^2\right )^{3/2}}+\frac{2 x \sin ^{-1}(a x)^3}{3 c^2 \sqrt{c-a^2 c x^2}}-\frac{2 i \sqrt{1-a^2 x^2} \sin ^{-1}(a x)^3}{3 a c^2 \sqrt{c-a^2 c x^2}}+\frac{\sqrt{1-a^2 x^2} \log \left (1-a^2 x^2\right )}{2 a c^2 \sqrt{c-a^2 c x^2}}+\frac{\left (4 i \sqrt{1-a^2 x^2}\right ) \operatorname{Subst}\left (\int \frac{e^{2 i x} x^2}{1+e^{2 i x}} \, dx,x,\sin ^{-1}(a x)\right )}{a c^2 \sqrt{c-a^2 c x^2}}\\ &=\frac{x \sin ^{-1}(a x)}{c^2 \sqrt{c-a^2 c x^2}}-\frac{\sin ^{-1}(a x)^2}{2 a c^2 \sqrt{1-a^2 x^2} \sqrt{c-a^2 c x^2}}+\frac{x \sin ^{-1}(a x)^3}{3 c \left (c-a^2 c x^2\right )^{3/2}}+\frac{2 x \sin ^{-1}(a x)^3}{3 c^2 \sqrt{c-a^2 c x^2}}-\frac{2 i \sqrt{1-a^2 x^2} \sin ^{-1}(a x)^3}{3 a c^2 \sqrt{c-a^2 c x^2}}+\frac{2 \sqrt{1-a^2 x^2} \sin ^{-1}(a x)^2 \log \left (1+e^{2 i \sin ^{-1}(a x)}\right )}{a c^2 \sqrt{c-a^2 c x^2}}+\frac{\sqrt{1-a^2 x^2} \log \left (1-a^2 x^2\right )}{2 a c^2 \sqrt{c-a^2 c x^2}}-\frac{\left (4 \sqrt{1-a^2 x^2}\right ) \operatorname{Subst}\left (\int x \log \left (1+e^{2 i x}\right ) \, dx,x,\sin ^{-1}(a x)\right )}{a c^2 \sqrt{c-a^2 c x^2}}\\ &=\frac{x \sin ^{-1}(a x)}{c^2 \sqrt{c-a^2 c x^2}}-\frac{\sin ^{-1}(a x)^2}{2 a c^2 \sqrt{1-a^2 x^2} \sqrt{c-a^2 c x^2}}+\frac{x \sin ^{-1}(a x)^3}{3 c \left (c-a^2 c x^2\right )^{3/2}}+\frac{2 x \sin ^{-1}(a x)^3}{3 c^2 \sqrt{c-a^2 c x^2}}-\frac{2 i \sqrt{1-a^2 x^2} \sin ^{-1}(a x)^3}{3 a c^2 \sqrt{c-a^2 c x^2}}+\frac{2 \sqrt{1-a^2 x^2} \sin ^{-1}(a x)^2 \log \left (1+e^{2 i \sin ^{-1}(a x)}\right )}{a c^2 \sqrt{c-a^2 c x^2}}+\frac{\sqrt{1-a^2 x^2} \log \left (1-a^2 x^2\right )}{2 a c^2 \sqrt{c-a^2 c x^2}}-\frac{2 i \sqrt{1-a^2 x^2} \sin ^{-1}(a x) \text{Li}_2\left (-e^{2 i \sin ^{-1}(a x)}\right )}{a c^2 \sqrt{c-a^2 c x^2}}+\frac{\left (2 i \sqrt{1-a^2 x^2}\right ) \operatorname{Subst}\left (\int \text{Li}_2\left (-e^{2 i x}\right ) \, dx,x,\sin ^{-1}(a x)\right )}{a c^2 \sqrt{c-a^2 c x^2}}\\ &=\frac{x \sin ^{-1}(a x)}{c^2 \sqrt{c-a^2 c x^2}}-\frac{\sin ^{-1}(a x)^2}{2 a c^2 \sqrt{1-a^2 x^2} \sqrt{c-a^2 c x^2}}+\frac{x \sin ^{-1}(a x)^3}{3 c \left (c-a^2 c x^2\right )^{3/2}}+\frac{2 x \sin ^{-1}(a x)^3}{3 c^2 \sqrt{c-a^2 c x^2}}-\frac{2 i \sqrt{1-a^2 x^2} \sin ^{-1}(a x)^3}{3 a c^2 \sqrt{c-a^2 c x^2}}+\frac{2 \sqrt{1-a^2 x^2} \sin ^{-1}(a x)^2 \log \left (1+e^{2 i \sin ^{-1}(a x)}\right )}{a c^2 \sqrt{c-a^2 c x^2}}+\frac{\sqrt{1-a^2 x^2} \log \left (1-a^2 x^2\right )}{2 a c^2 \sqrt{c-a^2 c x^2}}-\frac{2 i \sqrt{1-a^2 x^2} \sin ^{-1}(a x) \text{Li}_2\left (-e^{2 i \sin ^{-1}(a x)}\right )}{a c^2 \sqrt{c-a^2 c x^2}}+\frac{\sqrt{1-a^2 x^2} \operatorname{Subst}\left (\int \frac{\text{Li}_2(-x)}{x} \, dx,x,e^{2 i \sin ^{-1}(a x)}\right )}{a c^2 \sqrt{c-a^2 c x^2}}\\ &=\frac{x \sin ^{-1}(a x)}{c^2 \sqrt{c-a^2 c x^2}}-\frac{\sin ^{-1}(a x)^2}{2 a c^2 \sqrt{1-a^2 x^2} \sqrt{c-a^2 c x^2}}+\frac{x \sin ^{-1}(a x)^3}{3 c \left (c-a^2 c x^2\right )^{3/2}}+\frac{2 x \sin ^{-1}(a x)^3}{3 c^2 \sqrt{c-a^2 c x^2}}-\frac{2 i \sqrt{1-a^2 x^2} \sin ^{-1}(a x)^3}{3 a c^2 \sqrt{c-a^2 c x^2}}+\frac{2 \sqrt{1-a^2 x^2} \sin ^{-1}(a x)^2 \log \left (1+e^{2 i \sin ^{-1}(a x)}\right )}{a c^2 \sqrt{c-a^2 c x^2}}+\frac{\sqrt{1-a^2 x^2} \log \left (1-a^2 x^2\right )}{2 a c^2 \sqrt{c-a^2 c x^2}}-\frac{2 i \sqrt{1-a^2 x^2} \sin ^{-1}(a x) \text{Li}_2\left (-e^{2 i \sin ^{-1}(a x)}\right )}{a c^2 \sqrt{c-a^2 c x^2}}+\frac{\sqrt{1-a^2 x^2} \text{Li}_3\left (-e^{2 i \sin ^{-1}(a x)}\right )}{a c^2 \sqrt{c-a^2 c x^2}}\\ \end{align*}

Mathematica [A]  time = 0.558723, size = 211, normalized size = 0.54 \[ \frac{\left (1-a^2 x^2\right )^{3/2} \left (-12 i \sin ^{-1}(a x) \text{PolyLog}\left (2,-e^{2 i \sin ^{-1}(a x)}\right )+6 \text{PolyLog}\left (3,-e^{2 i \sin ^{-1}(a x)}\right )+3 \log \left (1-a^2 x^2\right )+\frac{4 a x \sin ^{-1}(a x)^3}{\sqrt{1-a^2 x^2}}+\frac{2 a x \sin ^{-1}(a x)^3}{\left (1-a^2 x^2\right )^{3/2}}+\frac{3 \sin ^{-1}(a x)^2}{a^2 x^2-1}+\frac{6 a x \sin ^{-1}(a x)}{\sqrt{1-a^2 x^2}}-4 i \sin ^{-1}(a x)^3+12 \sin ^{-1}(a x)^2 \log \left (1+e^{2 i \sin ^{-1}(a x)}\right )\right )}{6 a c \left (c-a^2 c x^2\right )^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[ArcSin[a*x]^3/(c - a^2*c*x^2)^(5/2),x]

[Out]

((1 - a^2*x^2)^(3/2)*((6*a*x*ArcSin[a*x])/Sqrt[1 - a^2*x^2] + (3*ArcSin[a*x]^2)/(-1 + a^2*x^2) - (4*I)*ArcSin[
a*x]^3 + (2*a*x*ArcSin[a*x]^3)/(1 - a^2*x^2)^(3/2) + (4*a*x*ArcSin[a*x]^3)/Sqrt[1 - a^2*x^2] + 12*ArcSin[a*x]^
2*Log[1 + E^((2*I)*ArcSin[a*x])] + 3*Log[1 - a^2*x^2] - (12*I)*ArcSin[a*x]*PolyLog[2, -E^((2*I)*ArcSin[a*x])]
+ 6*PolyLog[3, -E^((2*I)*ArcSin[a*x])]))/(6*a*c*(c - a^2*c*x^2)^(3/2))

________________________________________________________________________________________

Maple [A]  time = 0.207, size = 661, normalized size = 1.7 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(arcsin(a*x)^3/(-a^2*c*x^2+c)^(5/2),x)

[Out]

-1/6*(-c*(a^2*x^2-1))^(1/2)*(2*I*(-a^2*x^2+1)^(1/2)*x^2*a^2+2*a^3*x^3-2*I*(-a^2*x^2+1)^(1/2)-3*a*x)*arcsin(a*x
)*(-6*I*arcsin(a*x)*x^4*a^4-6*arcsin(a*x)*(-a^2*x^2+1)^(1/2)*x^3*a^3+6*I*(-a^2*x^2+1)^(1/2)*x^3*a^3-6*a^4*x^4+
6*arcsin(a*x)^2*x^2*a^2+12*I*arcsin(a*x)*x^2*a^2+9*arcsin(a*x)*(-a^2*x^2+1)^(1/2)*x*a-6*I*(-a^2*x^2+1)^(1/2)*x
*a+18*a^2*x^2-8*arcsin(a*x)^2-6*I*arcsin(a*x)-12)/c^3/(3*a^6*x^6-10*a^4*x^4+11*a^2*x^2-4)/a-(-c*(a^2*x^2-1))^(
1/2)*(-a^2*x^2+1)^(1/2)/a/c^3/(a^2*x^2-1)*ln(1+(I*a*x+(-a^2*x^2+1)^(1/2))^2)+2*(-c*(a^2*x^2-1))^(1/2)*(-a^2*x^
2+1)^(1/2)/a/c^3/(a^2*x^2-1)*ln(I*a*x+(-a^2*x^2+1)^(1/2))+4/3*I*(-a^2*x^2+1)^(1/2)*(-c*(a^2*x^2-1))^(1/2)/a/c^
3/(a^2*x^2-1)*arcsin(a*x)^3-2*(-c*(a^2*x^2-1))^(1/2)*(-a^2*x^2+1)^(1/2)/a/c^3/(a^2*x^2-1)*arcsin(a*x)^2*ln(1+(
I*a*x+(-a^2*x^2+1)^(1/2))^2)+2*I*(-a^2*x^2+1)^(1/2)*(-c*(a^2*x^2-1))^(1/2)/a/c^3/(a^2*x^2-1)*arcsin(a*x)*polyl
og(2,-(I*a*x+(-a^2*x^2+1)^(1/2))^2)-(-c*(a^2*x^2-1))^(1/2)*(-a^2*x^2+1)^(1/2)/a/c^3/(a^2*x^2-1)*polylog(3,-(I*
a*x+(-a^2*x^2+1)^(1/2))^2)

________________________________________________________________________________________

Maxima [A]  time = 2.70521, size = 143, normalized size = 0.37 \begin{align*} \frac{1}{2} \, a{\left (\frac{1}{a^{4} c^{\frac{5}{2}} x^{2} - a^{2} c^{\frac{5}{2}}} + \frac{2 \, \log \left (a x + 1\right )}{a^{2} c^{\frac{5}{2}}} + \frac{2 \, \log \left (a x - 1\right )}{a^{2} c^{\frac{5}{2}}}\right )} \arcsin \left (a x\right )^{2} + \frac{1}{3} \,{\left (\frac{2 \, x}{\sqrt{-a^{2} c x^{2} + c} c^{2}} + \frac{x}{{\left (-a^{2} c x^{2} + c\right )}^{\frac{3}{2}} c}\right )} \arcsin \left (a x\right )^{3} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arcsin(a*x)^3/(-a^2*c*x^2+c)^(5/2),x, algorithm="maxima")

[Out]

1/2*a*(1/(a^4*c^(5/2)*x^2 - a^2*c^(5/2)) + 2*log(a*x + 1)/(a^2*c^(5/2)) + 2*log(a*x - 1)/(a^2*c^(5/2)))*arcsin
(a*x)^2 + 1/3*(2*x/(sqrt(-a^2*c*x^2 + c)*c^2) + x/((-a^2*c*x^2 + c)^(3/2)*c))*arcsin(a*x)^3

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-\frac{\sqrt{-a^{2} c x^{2} + c} \arcsin \left (a x\right )^{3}}{a^{6} c^{3} x^{6} - 3 \, a^{4} c^{3} x^{4} + 3 \, a^{2} c^{3} x^{2} - c^{3}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arcsin(a*x)^3/(-a^2*c*x^2+c)^(5/2),x, algorithm="fricas")

[Out]

integral(-sqrt(-a^2*c*x^2 + c)*arcsin(a*x)^3/(a^6*c^3*x^6 - 3*a^4*c^3*x^4 + 3*a^2*c^3*x^2 - c^3), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\operatorname{asin}^{3}{\left (a x \right )}}{\left (- c \left (a x - 1\right ) \left (a x + 1\right )\right )^{\frac{5}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(asin(a*x)**3/(-a**2*c*x**2+c)**(5/2),x)

[Out]

Integral(asin(a*x)**3/(-c*(a*x - 1)*(a*x + 1))**(5/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\arcsin \left (a x\right )^{3}}{{\left (-a^{2} c x^{2} + c\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arcsin(a*x)^3/(-a^2*c*x^2+c)^(5/2),x, algorithm="giac")

[Out]

integrate(arcsin(a*x)^3/(-a^2*c*x^2 + c)^(5/2), x)